Finite tripotents and finite JBW⁎-triples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Decomposition of Real Jbw*-triples

We study the natural partial ordering in the set of all tripotents of a real JB∗-triple. We prove some characterizations of real-minimal tripotents and an atomic deocmpostion theorem for real JBW∗-triples is given.

متن کامل

Classification of Finite Spectral Triples

It is known that the spin structure on a Riemannian manifold can be extended to noncommutative geometry using the notion of a spectral triple. For finite geometries, the corresponding finite spectral triples are completely described in terms of matrices and classified using diagrams. When tensorized with the ordinary space-time geometry, finite spectral triples give rise to Yang-Mills theories ...

متن کامل

Grothendieck's Inequalities for Real and Complex Jbw*-triples

This paper relies on the important works of T. Barton and Y. Friedman [3] and C.-H. Chu, B. Iochum and G. Loupias [8] on the generalization of `Grothendieck's inequalities' to complex JB -triples. Of course, the Barton±Friedman±Chu± Iochum±Loupias techniques are strongly related to those of A. Grothendieck [15], G. Pisier (see [27, 28, 29]), and U. Haagerup [16], leading to the classical `Groth...

متن کامل

Forbidden Triples Generating a Finite set of 3-Connected Graphs

For a graph G and a set F of connected graphs, G is said be F-free if G does not contain any member of F as an induced subgraph. We let G3(F) denote the set of all 3-connected F-free graphs. This paper is concerned with sets F of connected graphs such that |F| = 3 and G3(F) is finite. Among other results, we show that for an integer m > 3 and a connected graph T of order greater than or equal t...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2020

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2020.124217